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ap n xam-mO n

QUASILINEAR SCATTERING FROM WAVES DRIVEN BY

BEAM-PLASMA INSTABILITIES

INTRODUCTION

Test data taken during the Starfish event of 1962 displays a

marked second brightening of the atmosphere in the southern conjugate

region. This brightening followed the initial luminescence in the

southern conjugate region caused by the deposition of the initial debris

by approximately 10 seconds.

The explanation that appears most probable involves scattering

a fraction of the streaming debris out of the loss cone as the debris

proceeds toward the southern conjugate region. The scattering sources

are waves excited to high levels driveni by the initial fast debris.

The scattered debris would then mirror in the southern conjugate and

stream toward the magnetic bubble. Some fraction would be scattered

back into the loss cone region by the loss cone instability. The remain-

der would mirror off of the bubble and return toward the southern

conjugate region. During the return the loss cone region could be filled

by loss cone instabilities and a seconi precipitation of debris particles

could occur. The second precipitation would involve a greater proportion

of the distribution because of nonlinear flattening of the distribution

function.

Manuscript submitted March 3, 1980
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In this report the possibility of exciting the waves which are

predicted to perform the scattering is addressed. It will be shown by

use of a numerical code and quasilinear estimates that indeed waves can

be excited and will grow to sufficient levels to cause quasilinear

diffusion of the streaming debris distribution function.

The code employed is a linear code which has been used to study

beam-plasma instabilities in tokamaks. The circumstances of the problem

are similar to a beam-plasma interaction, the general type of which, have

1-5
been studied for a number of years in the fusion community. The

linear code calculates the energy transfer between the beam and waves of

interest and the waves with the background plasma to determine the growth

rates and energy transferred to the wave. From these calculations

quasilinear estimates are made to determine the amount of scattering

taking place.

There are a large number of waves which may be excited by a beam

4
of high energy ions. Among them are the ion cyclotron wave, ion

Bernstein wave, ion acoustic wave, low-hybrid waves and shear Alfven

waves. Several of these waves are of high frequency and candidates for

study. However, the ion cyclotron wave and its higher harmonics, usually

called the ion Bernstein wave, are chosen for study because these waves

i 6-10
have been predicted theoretically and shown experimentally to be

excited during beam plasma interactions. The code employed for this work

was successful in predicting quite accurately these instabilities in a

variety of plasma devices from Q machines, to Tokamaks such as the French

10
tokamak, TFR, and PLT, the Princeton Large Torus.
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In the following section the details for calculating the linear

growth rates for the waves will be briefly discussed. The quasilinear

estimates are presented in the following section and finally the

conclusion of these calculations are presented.

.. 1
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LINEAR CALCULATION

The linear calculation is based on a perturbation method where

the real frequency is assumed larger than the imaginary, Wr > W 4,11

The code calculates the rate of change of the wave energy by computing a

time averaged J • E for each species given by the following formula

dW k_

dt - <J E> E Lj E nj (1)j j

where the sum j is over the plasma species. Physically the process of

energy transfer takes place through resonant processes either Landau

cyclotron or anomalous cyclotron resonances. The beam transfers energy

to the wave and background plasma. The wave in turn transfers energy

to the background electron or ions. If the beam pumping rate is larger

than the damping rates the wave grows.

Typically, the instability is parameterized by the amount of

beam density necessary to drive the wave unstable, nb. From Eq. (1) a

marginal stability criterion can be established. For marginal stability

+n + 0 (2)

ii +ee %b

where n are the densities of the species and(j is the power transferred

per particle. One then obtains

(e critical- e+ic/4(3)
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and

k $b n nb\

k I e b} (4
= 2Wk dat = Wk  n e lcri t.

where Eq. (4) is the equation for the growth rate. If nb is known then

the code calculates the power transfer per particle for the beam, I and

the wave energy for the wave being studied to produce the growth rate.

Obviously if nb/ne < (nb/ne) crit the mode is damped. The power transfer
1,4

function is calculated from the following formulas;

2 0
-e Z z

"3J 41ki iIvjmj .=-

where

M.j + k El(6)"1 k k11  I

and

fdvV V J -j
-2cj L 3v 2 w DO

0

Cj (7)
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with

c (W-R j )/kl

For Maxmillian Species

22 00

-bkv2 /mr /2

Mk, =,b~ \_ c j andvj (8

where l(b) is the modified Bessel function, b y 1 / and v 2T j

As can be seen from Eq. (7) in order to perform the calculations

one needs to know the distribution function for the beam, Fb. One could

assume a monoenergetic beam of particles streaming down the field lines

but while such a distribution will produce unstable waves it does not

appear realistic.

Noting that the debris streaming down the field lines has already

interacted with the coupling shell through a variety of instabilities,

i.e., loss cone and mirror instabilities, one needs a more sophisticated

model. The model must also consider the effects of velocity dispersion

because the excitation of the scattering wave can occur at considerable

distances from the burLt point. For a simple model of these effects one
1

can use the Fokker-Planck Equation to obtain a distribution which will

represent the fact that the debris particles have been scattered in

velocity space. Inclusion of a source term in the Fokker-Planck equation

4



allows one to model the velocity dispersion. That is, particles are

introduced into velocity space at a given location. The results of

running the Fokker-Planck section of the code is shown in Figure 1.

The beam was injected at 200 keV or a velocity of 1.18 x 108 cm/sec.

The distribution was allowed to evolve until an appropriate spread in

velocity was obtained. As can be seen in Figure 1 the resulting distribu-

tion function the particles have a pitch angle ratio of about 10 to 1,

v1 1 to v, consistent with the mirror ratio of the magnetic bubble. In

addition, the particle density is weighted toward the high velocity side

which is the effect produced by velocity dispersion along the magnetic

field line. The slow edge of the distribution has a parallel velocity

near 7.3 x 10 7cm/sec.

This distribution while not having the exact details of the

debris distribution function appears to have the quantitative details

which are of interest. In the calculations to be discussed, this is the

distribution employed. It represents, we feel, a conservative estimate

due to the smoothness and the way we introduced the beam. Only one-

quarter of the actual beam density was obtained so the actual gradients

are in fact smaller than might be expected.

It should be noted that the effect of the velocity dispersion is

very important because the instability grows in the positive slope region

of the instability. This characteristic has a definite effect in

determining where the velocity will be excited and what part of the total

debris spectrum will be affected. These effects will be discussed later

in this report.

.1J



Upon running the linear code it was found that, while the

fundamental electrostatic mode of the ion cyclotron wave could be

excited, very little energy was transferred into this mode. Therefore

growth rates were quite small and insufficient for the anticipated pulse

width of the debris. The details of the dispersion relation for the ion

cyclotron wave and its higher harmonics, the ion Bernstein waves, can be

found in Reference 1.

It was found that the ion Bernstein waves could be excited with

quite large growth rates. These rates approached the real frequency of

the mode when nb was taken to be 20% of ne. The parameters used for

these calculations are shown in Table I. Two harmonics of the wave were

considered. In the first wave to be studied the second cyclotron harmonic

of the beam cyclotron frequency resonantes with the wave near the second

harmonic of the plasma cyclotron frequency, i.e.,: w kw where

Zb = k = 2. In the case of exciting the third harmonic of the ion

Bernstein mode the resonate match was Z = 2, k = 3.

Both waves were found to be easily excited because the resonant

nature of the modes minimizes the Landau and cyclotron damping of the

modes. There was considerable energy transfer from the beam to the wave

and the growth rates approached Zwci , the limits of the code. Table II

show typical results of the second harmonic calculation. It can be seen

from Table II that the typical scale for the wavelengths are about 6 km

in the perpendicular direction and 30 km in the parallel direction. The

group velocities appear to be slow enough so that the excitation process

will occur on time scales faster than the energy transport. In summary



the results from the linear calculations indicate that waves of the

ion Bernstein type will be excited and so will some of the higher

frequency waves.

QUASILINEAR CALCULATION

In this section the quasilinear estimates for the pitch angle

scattering of the streaming debris are addressed. The purpose of this

discussion is to ascertain whether or not quasilinear effects would be

important. It should be noted from the outset that to perform this

calculation with complete accuracy one needs to do the problem numerically

in two dimensions. However, the approximation to one dimensional diffusion

is reasonably good as the perpendicular electron field of the wave, E.,

is considerably larger than the parallel E , E1 >> E1 . The general

approach for quasilinear calculations can be found in Reference 12.

As mentioned, the waves being considered are electrostatic in

nature. This allows one to write the equation for the quasilinear

behavior of the beam distribution as

( bcb a2 v )
--t-= k~Dv'I v+ " v kl 5v(W b - ki

(9)
x 2 _ Ifb +"cl- fb+,

xJ2  (k v /W b) (k 1  *avj- + ct a .L

I
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where J is the Bessel function and ck is the electrostatic potential.

For the unstable modes the parallel wave electric field is sufficiently

small that the quasilinear diffusion reduces to a diffusion in v at a

constant vl, given by

af b = ' ~ v fb fb

iL I~bv (10)

where

D(v v 1 ) = -2k) ID k 2J 9 cb 6 (wk - -cb k llv ) (11)

Equation (10) defines the quasilinear time, i.e., the time scale upon

which one expects quasilinear affects to act. The sum over the resonant

modes is related to the sum over the fluctuation spectrum through the

correlation time given by Tc = l/AkIVb (Avbll/vbll 6w) where Avbll/vb

is the relative width of the parallel velocity distribution and

6W = W - ci" This time scale is a measure of the time the beam will

stay in resonance with the wave. Although the time Tc can be long com-

pared to the wave period, one finds that the quasilinear conditions

remain valid for the noise levels estimated here for many e-folding times.

One can define the ratio of rf wave energy density to the thermal

plasma density by

S10



Frf = k (12)

T (noe Te + niTi)

where the wave energy, Wk, is defined in Reference 1 as

2 2 -b

Wk 2 (b1T e k(3
k (13)

where b _ /2.
cii

For this case E = E and it is assumed that T = T. = T for the rest of

the calculation. Substituting Eq. (13) into Eq. (12) returns the

following expression

2
2 ( k_ cb ) l -(b)eb (14)

rf 12Z.ITI (W - b ce

Using Eqs. (10) and (11) as well as the correlation time leads to the

expression for the quasilinear time

lieb Vb, (9 °b)2  (k(_b)2 
1W e b v 

I ( , c )k v . (15 )

t(-w

(w lf.DbI bi. b

mb 11j vb b



From Eqs. (14) and (15) one obtains the final form for the quasilinear

time

1 -(kw 2 (kv/w )
G 2cb k J cb 2yt

S 3cbrf G e (16)Tq kEb) b Wcb Ik(b)eb

where

4 2V ~ Ab
Gb E Vbb V b vb 2

measures the localization of the fast ion distribution velocity space.

It is assumed that the fluctuation potential begins from thermal levels

therefore Wk (thermal) = (2r) -3 T A3 k and using Eq. (13) the electric

field at the thermal level is estimated to be

2 T A 3k 167(w - kw *c)2
2 e2 t° , t 0  0 (17)

I k (b)e 2. pi

One last relation must be determined, that is the growth time necessary

for the mode to grow to nonlinear or saturated levels. This can be

estimated by recalling that trapping effects will occur when the noise

level has grown sufficiently. Typically this would occur when the trap-

ping velocity (e/Mb)I /2 becomes equal to AVb{ { or equivalentlypingvelcit (e/mb becmesequl t Av I Ior quialetlywhen the

1/2resonant fast ion bounce frequency, klj(e4/mb) /
, becomes equal to the

decorrelation rate lI/Tc . Applying this condition to Eq. (14) one arrives

at the relation

12



/ , 2 +u+u(+
rf 1 4/vb I ~ cb I~ bb(8

r rf(trap) 12 1~ kW (b) b18

with c defined as the sound speed. At this point one can estimate the

time it will take the mode to encounter nonlinear effect with the relation,

rf (trap)

nu 1 .n r (19)

'27 rf Y nF thermal)](9

Using the values contained in Tables I, II, and III, Eqs. (16) and (19)

can be evaluated. The quasilinear time estimate and the trapping time

estimate can be compared to one another and with the correlation time to

determine if the quasilinear effects have been self-consistently estimated.

Equations (16) and (19) along with the relation for the correla-

tion time were numerically evaluated. The correlation time, Tc, was

found to be in the range of 0.025 to 0.1 sec. This implies that the

positive slope of the distribution function such as shown in Figure 1

will be resonant with the wave for times of order 0.1 sec. The quasi-

linear time, Tq, which is the measure to determine if strong pitch angle

scattering will occur on a time scale comparable with or faster than the

correlation time, is found to be on order 10- 3 sec after the perturbed

potential has grown for %0.05 to 0.1 sec. The higher harmonic modes

reach the point of rapid quasilinear diffusion in shorter periods.

Finally, the saturation time, Tst is estimated to be approximately 0.05

to 0.1 sec.

13



The results of evaluating the relations for T , T and T isc q s

that T and T operate on comparable time scales and that on these time

scales the wave potential has grown to sufficient levels to produce

quite rapid quasilinear effects as reflected by the small values of Tq
qk

at times on the order of T or T.

In Figure 2, the results of evaluating the equation below are shown

v (i) = v (0) + E (eYt - 1) (20)mby to

where E is the thermal level of the perpendicular electric field. Into

this figure plots are made for y I- 2w and y % 3 w . They indicate that

v (t) will reach magnitudes large enough to remove the debris from the

loss cone region on the time scale of the estimated saturation time, T

From Figure 2, it can be seen that although the third harmonic wave begins

at a lower fluctuation level, due to its faster growth rate, it reaches

levels of sufficient size to cause the pitch angle scattering more rapidly

than the second harmonic. It is expected that waves with faster growth

rates would continue this trend.

Both the second and third harmonic waves appear in Figure 2 to

produce sufficient pitch angle scattering to explain the second brighten-

ing phenomena. The estimates indicate that the time scales for the wave

to grow and reach at least saturation amplitudes are faster than the

pulse width of debris.

14
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DISCUSSION

Due to the very complicated relations between the wave dispersion

relations and the beam distribution function in this calculation and the

lack of knowledge about the details of the time evolution of the debris

spectrum, it is impossible to make statements concerning the exact region

of the debris distribution function which will excite the waves.

Estimates can be made, however, which will indicate probable areas of

interest.

Before these estimates can be made some details of the wave

dispersion relation must be presented. It was found during the numerical

calculation that the frequency at any k valid with the parameter regime

of the calculation was independent of kii. It was also found in this

same parameter regime that the frequency was slowly varying in k

Therefore, to good accuracy over the full range of possible vblI one

could consider the frequency shift, w - kWci , to be a constant.

During the course of the calculation it was found that the modes

that could be excited had a very limited range in k1 D and that this

preferred parallel wavelength was about 30 km. To some extent this

particular wavelength is a function of the distribution used but the

narrowness of the spectrum is probably independent of it. As can be

seen in Figure 1, there was a fair range of vjj space in which the

distribution had a positive slope but the modes discussed here were the

only ones undergoing energy transfer. Using the resonant condition for

beam wave energy transfer, vbl = (W - wcb)kI , and noting that the

scale height of the atmosphere may limit the length of any given mode,

one can estimate an upper bound on the parallel velocity which might

15K



excite waves. With the scale height %100 km and recalling the

W - W ucb 1 constant the maximum parallel beam velocity is estimated to

be about 2.3 x 108 cm/sec. At equatorial latitudes the scale height

argument does not apply and one may find longer wavelengths thus higher

parallel velocities. One can make additional estimates by noting that

the mode which appears to be the most unstable in this sample calculation

has a parallel wavelength of about 30 km and that the correlation time,

where Tc % Av1 /(vbll6w), has a range of about 0.025 sec to 0.1 sec.

With these parameters the range of velocities which might excite the

7 8
waves is found to be about 6 x 10 cm/sec to 1.2 x 10 cm/sec. However,

once the waves have been excited debris of all velocities would undergo

strong pitch angle scattering. Clearly particles with higher velocities

than those exciting the wave would also be scattered by these waves but

the proportion of particles scattered at any given energy would be lower.

This occurs because the high energy particles emitted from the coupling

shell at the earliest times would encounter low levels of wave turbulence

while high energy particles emitted later would see high fluctuation levels.

The exact timing of such occurrences is difficult to ascertain.

The time of arrival for the particles with velocities in the

7 8
range 6 x 10 to 2.3 x 10 cm/sec is the southern conjugate region (SCR)

can be easily estimated. Using 4000 km as a canonical distance, one finds

that these particles will arrive in the SCR in the time frame of 1.8 to

7 sec. However, since these particles are expected to excite the waves

they represent the sections of the distribution which will be most

drastically isotropized by the waves. This would remove as much as 50%

of the debris population in this velocity range from the loss cone and

would account for the second brightening

16



While this discussion has been directed toward specific set of

Bernstein modes, one could expect a spectrum of both varying wavelengths

and different frequency harmonics to be excited. The higher harmonic

modes, X > 2, would be excited by the faster portions of the streaming

debris and will be scattered by these modes. The fluctuation levels may

be expected to be less than the modes discussed at length here due to
1

energy coupling difficulties encountered by the higher harmonic modes.

In any case the range of the spectrum will be greatly effected by the

exact details of the debris distribution as a function of time and space.

As a final comment estimates made from the SCORPIO code runs indicate

that there would be sufficient beam density to excite these waves in the

parameter region discussed.

.1
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CONCLUSIONS

The results of the linear calculations indicate that the ion

Bernstein modes near the second and third harmonic of the plasma

cyclotron frequency will be excited by the streaming debris. Modes of

higher frequency may also be excited but were not considered in these

calculations.

Quasilinear estimates indicate that quasilinear effects will

occur on time scales shorter than the debris pulse width 'i sec. Using

simple estimates for the growth rates and the amplitude of the perpendic-

ular electric field as a function of time, it is found that considerable

diffusion of the debris distribution function will occur on time scales

comparable with the saturation time, i.e., %0.1 sec.

The pitch angle scattering predicted from the quasilinear

estimates is more than sufficient to remove a significant fraction of

the streaming debris particles from the loss cone. From the estimates

made of the range of possible beam velocities that might excite the wave

and undergo pitch angle scattering it was found that a large percentage

of the total debris distribution was susceptible to these instabilities.

The estimates appear to be in agreement with the data in the SCR.

The second brightening in this region appeared to be nearly as bright as

the first indicating something approaching equal partition of the energy

between the two depositions. From these calculations most of the debris

distribution would be susceptible to the instabilities and one then has

the possibility of up to 50% of the debris being mirrored. This of

course would be the upper bound and a more realistic number probably

involves factors of two. An additional phenomena was observed during

18



the SCR deposition. It appeared on the film that the altitude of deposi-

tion between the first and second brightening had changed. The region of

luminescence caused by the second deposition appeared at a higher altitude.

These results would indicate that the energy of the most energetic

particles in the debris being deposited was less than at the time of the

first deposition. This again appears to be consistent with the effects

of the instability. As the waves are excited, the particles must lose

energy. This would have the effect of decreasing the energy of the

portions of the distribution which is exciting the waves. Typically the

higher energy particles.

In summary, from the linear and quasilinear calculations it is

certain that the ion Bernstein waves can be excited. It appears that

they can be excited to sufficient wave amplitude to cause strong pitch

angle scattering and explain the second brightening seen in the southern

conjugate region during the Starfish event. It also seems clear that

nonlinear effects may make the phenomena discussed here even more pro-

nounced if flattening of the distributions occurs. This flattening would

inhibit the excitation of these waves after the isotropization. The

result of this would be that upon subsequent bounces the particles would

not be scattered out of the loss cone by these instabilities and would

then precipitate for the most part upon return to the SCR, with particles

being returned to the loss cone region by loss cone instabilities. Work

on a problem similar to this is discussed in References 1.3 and 14 where

the authors have addressed the problem of electron trapping in the

radiation belts.
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I.

Table I

Input Parameters for Ion Bernstein Mode

Electron Temperature 0.07 eV

Ion Temperature 0.07 eV

Magnetic Field 0.3 G

Electron Density 1.0 x 10 4/cm 
3

Mass of Beam Particle 27 m
p

Beam Density 0.2 ne

Mass of Background Ions 16 m

Initial Beam Velocity 1.18 x 108 cm/sec or 200 keV

21



Table II

Results for the second Harmonic Excitation

2. =2

Growth Rate ,, 2w.c

W - % 0.01W. 0.01
ci ci ci

W ci 1. 80 x 102/sec

Ld ' 1.06 x 10 2/sec

2W 3.56 x 10 /sec

k l .E-6/cm

k1  2.E-6/cm

4v\ 9.15 x 10 cm/sec
t2 L

v %. 2.97 x 10 2cm/sec

vg~f 1 lx 10 7cm/sec

4 22



Table III

Parameter for Quasilinear Estimate

bi b cb £

AbH 0 2v l

VL I bil

Ak 1 3 x10-7 /c

Ak fu 3 x10-6 cem

-b Y. b 2J 291(b)e % (b/2) e -- (1/2)

Jk(k v /w b) ' (1/2 k Iv /W

A k ruAk IAk2

5
c '\u 6.47 x 10 cm/sec

8v . 1.18 x 10 cm/sec
b
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7 1.18x108 cm/se '
200 keV
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0 10 20 30 :
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v.[I.
Figure I

The debris distribution functions as used in the linear
calculation. The velocity of injection is 1.18 x 108 cm/sec.

The velocities on the plot are in dimensionless units. The
normalization velocity is 5.59 x 106 cm/sec.
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V1(O) = 7.3x106 cm/sec

T .02r- .1 sec

C
for both modes1.xi08_.
s'I 1 sec for 9, = 2

.05sec fork = 3

i~i7 - =3

2=2
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Figure 2

The time evolution of the perpendicular velocity of the

streaming debris. The initial vbi is assumed 0.1 of vbj.

The parallel correlation time, Tc, and Ts, the estimated

time for parallel trapping effects are shown for each mode.

In both Z = 2 and k = 3 case it was assumed that y "- Zci.

j
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